

Natural disaster monitoring and mapping from global datasets

José I. Barredo

EM-DAT Technical Advisory Group Meeting 26-27 October 2009, New York

Outline

- Assessing trends of flood losses in Europe
- Mapping major flood disasters

Normalising losses from natural disasters in Europe

- Economic losses from floods show a positive upward trend over time
- •Trends of losses from natural disasters:
 - societal factors (changes in exposure)
 - climatic factors
- Studies do not tend to take into account socioeconomic factors

Normalising losses from natural disasters in Europe

- Normalisation explicitly address the influence of socio-economic effects on the time-series of losses
- Normalisation attempts to answer the question of what would be the magnitude of economic losses if events from the past were to recur under current societal conditions

	World regions				
Hazards	Europe	US	Australia	Latin America and the Caribbean	India (Andhra Pradesh)
Flood	0 (6)				
Hurricane		0 (7) 1(10)		0 (7)	
Storm		0 (1)			
Winter storm		0 (1)			
Snowstorm		0 (1)			
Weather-driven			0 (5)		
Tropical cyclone					0 (9)
Tornado		0 (8)			
Windstorm	0 (6)				
Earthquake		0 (11)			

References:

- (1) Changnon et al., 1997, 1998, 2003
- (5) Crompton et al., 2008
- (6) Barredo, 2009
- (7) Pielke Jr. et al., 1998, 2003, 2008
- (8) Brooks et al., 2001
- (9) Raghavan et al., 2003
- (10) Schmidt et al., 2009
- (11) Vranes and Pielke, 2009

0: no upward trend over time 1: positive trend Reference in brackets

The catalogue of flood disasters 1970-2008

- Sources:
 - Available data from EM-DAT (CRED) and re-insurers

• Augmented with: historical reports, peer-reviewed articles and other ancillary sources (e.g. newspaper archives, water authorities, etc)

- 31 European countries
- 1970 2008

Normalisation method

- We adjusted the data on economic losses over the years according to: <u>inflation</u>, <u>population</u> and <u>real per</u> <u>capita wealth</u>
- Inter-country price differences were adjusted using purchasing power parities (PPP)

$$L_{2008} = L_i \times I_{ij} \times PPP_{ij} \times P_{ij} \times W_{ij}$$

Normalisation example

Storm 87J in France:

1.6 b US\$ (nominal values as of 1987)

Inflation factor 1987-2008:	1.86
Ratio population 1987-2008:	1.12
Ratio real p.c. wealth 1987-2008:	1.38
PPP factor:	0.83

Losses₂₀₀₈ = 1.6 b US\$ * 1.86 * 1.12 * 1.38 * 0.83 =

3.8 b int. US\$ as of 2008

How accurate are disaster loss data?

Number of flood disasters

	Entire catalogue	Events > 1b
1970 - 2006	122	27
1970 - 1988	32	12
1989 - 2006	90	15
ratio	2.8	1.3
Losses	100%	82%

Effect of improvements in disaster data collection or anthropogenic forcings [?]

How accurate are disaster loss data?

Number of windstorm disasters

	Complete catalogue	Events > 1b
1970 - 2008	54	25
1970 – 1989	13	11
1990 - 2008	41	14
ratio	3.2	1.3
Losses	100%	93%

Assessing the catalogue Time distribution of windstorm disaster losses

Source: Barredo, J.I., 2009, Normalised flood losses in Europe: 1970–2006. NHESS, 9, 97-104.

Source: Barredo, J.I., 2009, No upward trend in normalised windstorm losses in Europe: 1970–2008. NHESS submitted.

Methods for mapping major natural disasters

- EM-DAT

- Ancillary geographical data
- Watersheds (USGS HYDRO1K)

Peduzzi et al. (2005) Mapping disastrous natural hazards using global datasets. *Natural Hazards*, 35: 265–289.

- EM-DAT
- Ancillary geographical data (GISCO)

- Potential flood hazard map (extreme water levels)

Barredo, J.I. (2007) Major flood disasters in Europe 1950-2005. *Natural Hazards*, 42: 125–148.

- EM-DAT
- Ancillary geographical data (GISCO)
- Potential flood hazard map (extreme water levels)

EM-DAT raw data

Start: 12/2/2003 End: 12/3/2003 Country/Location: France: Herault, Gard, Bouchesdu-Rhone, Vaucluse (South and East); Rhone river Type: Flood Sub Type: Flash flood Name: Killed: 9 Tot. Affected: 27,000 Est. Damage (US\$ Million): 1,500 DisNo: 2003-0586

- EM-DAT
- Ancillary geographical data (GISCO)
- Potential flood hazard map (extreme water levels)

- EM-DAT
- Ancillary geographical data (GISCO)
- Potential flood hazard map (extreme water levels)

- EM-DAT
- Ancillary geographical data (GISCO)
- Potential flood hazard map (extreme water levels)

- EM-DAT
- Ancillary geographical data (GISCO)
- Potential flood hazard map (extreme water levels)

- EM-DAT
- Ancillary geographical data (GISCO)
- Potential flood hazard map (extreme water levels)

Major flood disasters in Europe: 2003-2008

Major flood disasters in Europe: 1950-2005

1 to 23: flash floods, 24 to 44: river floods, 45 to 47 storm surge floods. Triangles represent large regional events

Outlook

- Setting-up of disaster-prone macro-regions (hot-spots)
- Monitoring of major disasters
- Coarse resolution / accuracy issues (continental scale)
- Results could be evaluated at province/county [NUTS-3] level: casualties, losses

Further cooperation with CRED (EM-DAT) and applicability issues

- Monitoring and mapping of natural (flood) disasters
 Reporting: European Environment Agency (EEA)
 EU's Directive of flood risks
- Trends of natural disasters: improvements on the reporting of major disasters e.g. > 1b US\$ (retrospective 1970s)
- Geo-referencing: Information on location: administrative units, geographical features → rivers, cities, regions, counties, etc
- Link with other providers \rightarrow e.g. Reliefweb, Dartmouth Flood Observatory (DFO), others

Further cooperation with CRED (EM-DAT) and applicability issues

- Easy access to EM-DAT database: web-site, agreement
- Crosschecking with disaster data from Reinsurance firms

Thank you

http://floods.jrc.ec.europa.eu